skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Camp, Emma F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Active chlorophyllafluorometry is a well‐established tool for noninvasively diagnosing coral functional state, but has not yet been developed as a rapid phenotyping (functional screening) platform as for agriculture and forestry. Here, we present a proof‐of‐concept using Light‐Induced Fluorescence Transient‐Fast Repetition Rate fluorometry (LIFT‐FRRf) to identify coral photobiological‐based phenotypes in the context of rapidly scaling coral propagation practices on the northern Great Barrier Reef. For example, resolving light niche plasticity to inform transplantation, and identifying functionally diverse colonies to maximize stock selection. We first used optically diverse laboratory‐reared corals and coral endosymbiont (Symbiodiniaceae) isolates to develop a phenotyping approach integrating FRRf instantaneous kinetic parameters (light harvesting, electron turnover rates) and light‐dependent parameters (dynamic “quenching” terms, saturating light intensity [EK]). Subsequent field‐based LIFT‐FRRf phenotyping of coral from a selective (2‐4 m depth) reef habitat revealed that widely topographically dispersed platingAcroporataxa exhibited broad light niche plasticity (EKvariance) underpinned by multiple phenotypes that were predominantly differentiated by minimum electron turnover capacity; fluorometer configurations that cannot resolve kinetic parameters will thus likely have more limited capacity to resolve phenotypes. As such, platingAcroporahave broad propagation potential in terms of multiple functional variants for stock and across diverse light environments (growth, transplantation). In contrast, coral taxa (Pocillopora verrucosa,Echinopora lamellosa) with relatively restricted topographic dispersion exhibited less light niche plasticity and only single phenotypes, thereby imposing more constraints for propagation. We discuss the core technical, operational, and conceptual steps required to develop more sophisticated coral phenotyping platforms. 
    more » « less
  2. ABSTRACT The juxtaposition of highly productive coral reef ecosystems in oligotrophic waters has spurred substantial interest and progress in our understanding of macronutrient uptake, exchange, and recycling among coral holobiont partners (host coral, dinoflagellate endosymbiont, endolithic algae, fungi, viruses, bacterial communities). By contrast, the contribution of trace metals to the physiological performance of the coral holobiont and, in turn, the functional ecology of reef‐building corals remains unclear. The coral holobiont's trace metal economy is a network of supply, demand, and exchanges upheld by cross‐kingdom symbiotic partnerships. Each partner has unique trace metal requirements that are central to their biochemical functions and the metabolic stability of the holobiont. Organismal homeostasis and the exchanges among partners determine the ability of the coral holobiont to adjust to fluctuating trace metal supplies in heterogeneous reef environments. This review details the requirements for trace metals in core biological processes and describes how metal exchanges among holobiont partners are key to sustaining complex nutritional symbioses in oligotrophic environments. Specifically, we discuss how trace metals contribute to partner compatibility, ability to cope with stress, and thereby to organismal fitness and distribution. Beyond holobiont trace metal cycling, we outline how the dynamic nature of the availability of environmental trace metal supplies can be influenced by a variability of abiotic factors (e.g. temperature, light, pH, etc.). Climate change will have profound consequences on the availability of trace metals and further intensify the myriad stressors that influence coral survival. Lastly, we suggest future research directions necessary for understanding the impacts of trace metals on the coral holobiont symbioses spanning subcellular to organismal levels, which will inform nutrient cycling in coral ecosystems more broadly. Collectively, this cross‐scale elucidation of the role of trace metals for the coral holobiont will allow us to improve forecasts of future coral reef function. 
    more » « less